AX400 Series **User Guide**

Models AX410 and AX411 Single and Dual Input Conductivity Analyzers

Incorporating Models AX450 and AX455 To Meet United States Pharmacopeia (USP 645) **Regulations**

The Company

We are an established world force in the design and manufacture of instrumentation for industrial process control, flow measurement, gas and liquid analysis and environmental applications.

As a part of ABB, a world leader in process automation technology, we offer customers application expertise, service and support worldwide.

We are committed to teamwork, high quality manufacturing, advanced technology and unrivalled service and support.

The quality, accuracy and performance of the Company's products result from over 100 years experience, combined with a continuous program of innovative design and development to incorporate the latest technology.

The NAMAS Calibration Laboratory No. 0255 is just one of the ten flow calibration plants operated by the Company, and is indicative of our dedication to quality and accuracy.

Use of Instructions

Warning.

An instruction that draws attention to the risk of injury or death.

Caution.

An instruction that draws attention to the risk of damage to the product, process or surroundings.

Lenno, Italy – Cert. No. 9/90A

 $\frac{*}{N}$ Note. Clarification of an instruction or additional information.

Information.

Further reference for more detailed information or technical details.

Although **Warning** hazards are related to personal injury, and **Caution** hazards are associated with equipment or property damage, it must be understood that operation of damaged equipment could, under certain operational conditions, result in degraded process system performance leading to personal injury or death. Therefore, comply fully with all **Warning** and **Caution** notices.

Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manual for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of the Marketing Communications Department.

Health and Safety

To ensure that our products are safe and without risk to health, the following points must be noted:

- 1. The relevant sections of these instructions must be read carefully before proceeding.
- 2. Warning labels on containers and packages must be observed.
- 3. Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with the information given.
- 4. Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/ or temperature.
- 5. Chemicals must be stored away from heat, protected from temperature extremes and powders kept dry. Normal safe handling procedures must be used.
- 6. When disposing of chemicals ensure that no two chemicals are mixed.

Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) may be obtained from the Company address on the back cover, together with servicing and spares information.

CONTENTS

Section **Page**

1 INTRODUCTION

The AX410 single input and AX411 dual input conductivity analyzers have been designed for continuous monitoring and control of conductivity.

The AX450 single input and AX455 dual input conductivity analyzers have been designed to meet United States Pharmacopeia (USP 645) requirements for continuous monitoring and control of conductivity.

It is available in wall-/pipe-mount or panel-mount versions and can be used with either one or two sensors, each with a temperature input channel. When used with two sensors, readings can be compared to produce a range of extrapolated values.

When making temperature compensated measurements, the sample temperature is sensed by a resistance thermometer (Pt100 or Pt1000) mounted in the measuring cell.

Analyzer operation and programming are performed using five tactile membrane keys on the front panel. Programmed functions are protected from unauthorized **Alt**eration by a fivedigit security code.

Analyzer Model Number	Description of Analyzer	Sensor A	Sensor B
AX410	Single Input Conductivity (0 to 10,000 µS/cm)	Conductivity	Not Applicable
AX411	Dual Input Conductivity (0 to 10,000 µS/cm)	Conductivity	Conductivity
AX416	Dual Input Conductivity and pH/Redox(ORP)	Conductivity	pH/Redox(ORP)
AX450	Single Input Conductivity (USP)	Conductivity	Not Applicable
AX455	Dual Input Conductivity (USP)	Conductivity	Conductivity
AX460	Single Input pH/Redox(ORP)	pH/Redox(ORP)	Not Applicable
AX466	Dual Input pH/Redox(ORP)	pH/Redox(ORP)	pH/Redox(ORP)

Table 1.1 AX400 Series Analyzer Options

2 OPERATION

2.1 Powering Up the Analyzer

Caution. Ensure all connections are made correctly, especially to the earth stud – see Section 6.3.

- 1) Ensure the input sensors are connected correctly.
- 2) Switch on the power supply to the analyzer. A start-up screen is displayed while internal checks are performed, then the conductivity measurement readings screen (Operating Page) is displayed as conductivity measuring operation starts.

2.2 Displays and Controls

The display comprises two rows of 4¹/₂ digit, 7-segment digital displays, which show the actual values of the measured parameters and alarm set points, and a 6-character dot matrix display showing the associated units. The lower display line is a 16-character dot matrix display showing the programming information.

2.2.1 Key Functions

2.3 Operating Page

2.3.1 Single Input Conductivity

…2.3 Operating Page

2.3.2 Dual Input Conductivity

Calculations

A range of computed dual conductivity readings can be displayed, each showing the result of a calculation performed by the analyzer. In each case, the type of calculation is shown on the lower display line, followed by the result of the calculation.

Calculations performed are:

3 OPERATOR VIEWS

3.1 View Set Points

3.2 View Outputs

3.3 View Hardware

…3 OPERATOR VIEWS

3.4 View Software

3.5 View Logbook

 \ast **Note.** The **VIEW LOGBOOK** function is available only if the optional analog output board is fitted *and* **Logbook** is set to **On** in the **CONFIG. LOGBOOK** page.

…3.5 Logbook

…3 OPERATOR VIEWS

…3.5 Logbook

3.6 View Clock

 \ast **Note.** The **VIEW CLOCK** function is available only if the optional analog output board is fitted.

4 SETUP

4.1 Sensor Calibration

$\vert \ast$ **Notes.**

- Sensor calibration is not usually required as the cell constant 'K' assigned to a cell is sufficiently accurate for most applications.
- TB2 cells are equipped with 2-wire temperature compensators therefore temperature errors can be expected in applications where the length of the connecting cable exceeds 10m. Carry out an situ temperature calibration to remove these errors.

5 PROGRAMMING

5.1 Security Code

…5 PROGRAMMING

5.2 Configure Display

5.3 Configure Conductivity Sensors

…5.3 Configure Conductivity Sensors

…5.3 Configure Conductivity Sensors

…5.3 Configure Conductivity Sensors

…5 PROGRAMMING

5.4 Configure Alarms

Sample Temperature		USP645 Alarm Set Point Value	
$(^{\circ}C)$	$(^\circ$ F)	$(\mu S/cm)$	
70	158	2.5	
75	167	2.7	
80	176	2.7	
85	185	2.7	
90	194	2.7	
95	203	2.9	
100	212	3.1	

Table 5.3 USP645 Alarm Set Point Values

5 PROGRAMMING…

…5.4 Configure Alarms

AX410 and AX411 analyzers or **A1: Type** not set to **USP645** (AX450 and AX455 analyzers only) – continued on next page…

…5 PROGRAMMING

…5.4 Configure Alarms A1: Type set to USP645 **USP Offset** Enables the USP645 alarm set point value to be adjusted for increased process protection, $\begin{array}{|c|} \hline \blacksquare \\ \hline \rule{0pt}{1.1ex}\rule{0pt}{2.1ex}\quad \rule{0pt}{2.1ex}\quad \rule{0pt}{2.1ex$ i.e. the USP alarm set point value in Table 5.3 is offset by the amount entered (table value $\Box \Box \Box$ uS/cm – offset value) to enable the alarm to be triggered early. A1: USP Offset \ast **Note.** The **USP Offset** parameter is available only on AX450 and AX455 analyzers 面 and only if **A: Cond.Units** is set to **USP645** (see Section 5.3) and **A1: Type** is set to **USP645**. **A1: Type** not set to USP645**Alarm 1 Set Point** $\boxed{\blacktriangle}$ The alarm 1 set point can be set to any value within the input range being displayed. 100 uS/cm $\boxed{\blacktriangledown}$ Set the alarm set point to the required value – see table 5.2. A1: Setpoint \blacksquare **Alarm 1 Hysteresis** A differential set point can be defined between 0 and 5% of the alarm set point value. Set $\begin{tabular}{|c|c|} \hline \multicolumn{3}{|c|}{\textbf{A}} \\ \hline \multicolumn{3}{|c|}{\textbf{A$ the required hysteresis, adjustable in steps of 0.1%. $\Pi\Pi^*$ $\overline{\blacktriangledown}$ A1: Hysteresis <u>र्घ</u> **Alarm 1 Delay** When an alarm condition occurs, the activation of the relays and LEDs is delayed for the $\boxed{\blacktriangle}$ specified time period. If the alarm clears within the period, the alarm is not activated. \prod Secs $\overline{}$ Set the required delay, in the range 0 to 60 seconds in steps of 1 second. 向 A1: Delay \blacksquare 画 Config. Alarm 2 Alarm 2 (and Alarms 3 and 4 if optional analog output board is fitted) Config. Alarm 1 configuration is identical to Alarm 1. See Section 5.5. CONFIG. OUTPUTS

…5.4 Configure Alarms

…5 PROGRAMMING

5.5 Configure Outputs

…5.5 Configure Outputs

…5 PROGRAMMING

…5.5 Configure Outputs

5.6 Output Functions

5.6.1 Bi-Linear Output – Fig. 5.6

…5.6 Output Functions

5.6.2 Logarithmic Output (2-decade) – Fig. 5.7

…5 PROGRAMMING

5.7 Configure Clock

 \ast

Note. The **Config. Clock** function is available only if the optional analog output board is fitted.

5.8 Configure Security

5.9 Configure Logbook

…5 PROGRAMMING

5.10 Test Outputs and Maintenance

6 INSTALLATION

6.1 Siting Requirements

Caution.

- Mount in a location free from excessive vibration.
- Mount away from harmful vapours and/or dripping fluids.

 \sqrt{i} **Information.** It is preferable to mount the analyzer at eye level, allowing an unrestricted view of the front panel displays and controls.

…6 INSTALLATION

6.2 Mounting

6.2.1 Wall-/Pipe-mount Analyzers – Figs. 6.2 and 6.3

…6.2 Mounting

6.2.2 Panel-mount Analyzers – Figs. 6.4 and 6.5

…6 INSTALLATION

6.3 Connections, General

Warning. The power supply earth (ground) **must** be connected to ensure safety to personnel, reduction of the effects of RFI interference and correct operation of the power supply interference filter.

Caution. The metal braid in the conductivity cell connecting cable **must not** be earthed, or allowed to touch earthed components, and must be cut back to the insulation at the conductivity cell end.

\boldsymbol{i} **Information.**

- **Earthing (grounding)** stud terminal(s) is fitted to the analyzer case for bus-bar earth (ground) connection see Fig. 6.8 (wall- /pipe-mount analyzers) or Fig. 6.10 (panel-mount analyzers).
- **Cable lengths** the integral cable may be extended using a suitable junction box, but the total cable length must not exceed 50m (137.5 ft) for cells with a constant of <0.1 or 100m (275 ft) for cells with a constant of ≥0.1.
- **Cable routing** always route signal output/conductivity cell cable leads and mains-carrying/relay cables separately, ideally in earthed metal conduit. Use twisted pair output leads or screened cable with the screen connected to the case earth stud.

Ensure that the cables enter the analyzer through the glands nearest the appropriate screw terminals and are short and direct. Do not tuck excess cable into the terminal compartment.

- **Cable glands & conduit fittings** ensure that the NEMA4X/IP66 rating is not compromised when using cable glands, conduit fittings and blanking plugs/bungs (M20 holes). The M20 glands accept cable of between 5 and 9mm (0.2 and 0.35 in.) diameter.
- **Relays** –the relay contacts are voltage-free and must be appropriately connected in series with the power supply and the alarm/control device which they are to actuate. Ensure that the contact rating is not exceeded. Refer also to Section 6.3.1 for relay contact protection details when the relays are to be used for switching loads.
- **Analog output** Do not exceed the maximum load specification for the selected analog output range.

Since the analog output is isolated, the –ve terminal **must** be connected to earth (ground) if connecting to the isolated input of another device.

…6.3 Connections, General

6.3.1 Relay Contact Protection and Interference Suppression – Fig. 6.6

If the relays are used to switch loads on and off, the relay contacts can become eroded due to arcing. Arcing also generates radio frequency interference (RFI) which can result in analyzer malfunctions and incorrect readings. To minimize the effects of RFI, arc suppression components are required; resistor/capacitor networks for a.c. applications or diodes for d.c. applications. These components can be connected either across the load or directly across the relay contacts. The RFI components must be fitted to the relay terminal block along with the supply and load wires – see Fig 6.6.

For **AC applications** the value of the resistor/capacitor network depends on the load current and inductance that is switched. Initially, fit a 100R/0.022µF RC suppressor unit (part no. B9303) as shown in Fig. 6.6A. If the analyzer malfunctions (locks up, display goes blank, resets etc.) the value of the RC network is too low for suppression and an **Alt**ernative value must be used. If the correct value cannot be obtained, contact the manufacturer of the switched device for details on the RC unit required.

For **DC applications** fit a diode as shown in Fig. 6.6B. For general applications use an IN5406 type (600V peak inverse voltage at 3A – part no. B7363).

…6.3 Connections, General

6.3.2 Cable Entry Knockouts, Wall-/Pipe-mount Analyzer – Fig. 6.7

The analyzer is supplied with 7 cable glands, one fitted and six to be fitted, as required, by the user – see Fig. 6.7.

6 INSTALLATION…

Warning. Before making any connections, ensure that the power supply, any high voltage-operated control circuits and high common mode voltages are switched off.

6.4 Wall-/Pipe-mount Analyzer Connections

6.4.1 Access to Terminals – Fig. 6.8

…6 INSTALLATION

…6.4 Wall-/Pipe-mount Analyzer Connections

6.4.2 Connections – Fig. 6.9

6 INSTALLATION…

Warning. Before making any connections, ensure that the power supply, any high voltage-operated control circuits and high common mode voltages are switched off.

6.5 Panel-mount Analyzer Connections

6.5.1 Access to Terminals – Fig. 6.10

…6.5 Panel-mount Analyzer Connections

6.5.2 Connections – Fig. 6.11

Fig. 6.11 Connections, Panel-mount Analyzers

7 CALIBRATION

$\frac{\ast}{\mathsf{Notes.}}$

- The analyzer is calibrated by the Company prior to dispatch and routine recalibration is not necessary. High stability components are used in the analyzer's input circuitry and, once calibrated, the Analog to Digital converter chip selfcompensates for zero and span drift. It is therefore unlikely that the calibration will change over time. It is not advisable to attempt recalibration unless the input board has been replaced or the calibration tampered with.
- Prior to attempting recalibration, test the analyzer's accuracy using suitably calibrated test equipment see Sections 7.2 and 7.3.

7.1 Equipment Required

- a) Decade resistance box (conductivity cell input simulator): 0 to 10kΩ (in increments of 0.1Ω), accuracy ±0.1%.
- b) Decade resistance box (Pt100/Pt1000 temperature input simulator): 0 to 1kΩ (in increments of 0.01Ω), accuracy ±0.1%.
- c) Digital milliammeter (current output measurement): 0 to 20mA.

✶ **Note.** Resistance boxes have an inherent residual resistance which may range from a few mΩ up to 1Ω. This value must be taken into account when simulating input levels, as should the overall tolerance of the resistors within the boxes.

7.2 Preparation

- a) Switch off the supply and disconnect the conductivity cell(s), temperature compensator(s) and current output(s) from the analyzer's terminal blocks.
- b) Sensor A:
	- 1) Link terminals B9 and B10.
	- 2) Link terminal B12 to the Case Earth Stud see Fig. 6.8.
	- 3) Connect the 0 to 10kΩ decade resistance box to terminals B13 and B14 to simulate the conductivity cell. Connect the decade box earth to the Case Earth Stud.
	- 4) Connect the 0 to 1kΩ decade resistance box to terminals B11 and B9 to simulate the Pt100/Pt1000.

Sensor B (dual input conductivity only):

- 1) Link terminals B1 and B2.
- 2) Link terminal B4 to the Case Earth Stud see Fig. 6.8.
- 3) Connect the 0 to 10kΩ decade resistance box to terminals B5 and B6 to simulate the conductivity cell. Connect the decade box earth to the Case Earth Stud.
- 4) Connect the 0 to 1kΩ decade resistance box to terminals B3 and B1 to simulate the Pt100/Pt1000.
- c) Connect the milliammeter to the analog output terminals.
- d) Switch on the supply and allow ten minutes for the circuits to stabilize.
- d) Select the **FACTORY SETTINGS** page and carry out Section 7.3.

…7 CALIBRATION

7.3 Factory Settings

…7.3 Factory Settings

…7.3 Factory Settings

Yes selected – the display returns to the **Calibrate Sensor A** page. **No** selected – calibration continues. CAL. SENSOR A

…7.3 Factory Settings

Cal. Output 2

Cal. Output 3 Optional analog output board fitted.

Return to **Operating Page**.

Dual Cond.

Load/Save Config Optional analog output board not fitted – see page 44.

…7 CALIBRATION

…7.3 Factory Settings

8 SIMPLE FAULT FINDING

8.1 Error Messages

If erroneous or unexpected results are obtained the fault may be indicated by an error message – see Table 8.1. However, some faults may cause problems with analyzer calibration or give discrepancies when compared with independent laboratory measurements.

Table 8.1 Error Messages

8.2 No Response to Conductivity Changes

The majority of problems are associated with the conductivity cell which must be cleaned as an initial check. It is also important that all program parameters have been set correctly and have not been **Alt**ered inadvertently – see Section 5.

If the above checks do not resolve the fault:

a) Check the analyzer responds to a resistance input. Disconnect the conductivity cell cable and connect a suitable resistance box directly to the analyzer input – see Section 6.4. Select the **CONFIG. SENSORS** page and and set **Temp.Comp.** to **None** – see Section 5.3. Check the analyzer displays the correct values as set on the resistance box – see Table 8.2 or use the expression:

$$
R = \frac{K \times 10^6}{G}
$$

Where: $R =$ resistance

$$
K = \text{cell constant}
$$

 $G =$ conductivity

Failure to respond to the input indicates a fault with the analyzer which must be returned to the Company for repair. A response, but with incorrect readings, usually indicates an electrical calibration problem. Re-calibrate the analyzer as detailed in Section 7.3.

b) If the response in a) is correct, reconnect the conductivity cell cable and connect the resistance box to the cell end. Check the analyzer displays the correct values as set on the resistance box in this configuration.

If the analyzer passes check a) but fails check b), check the cable connections and condition. If the response for both checks is correct, replace the conductivity cell.

Table 8.2 Conductivity Readings for Resistance Inputs

8.3 Checking the Temperature Input

Check the analyzer responds to a temperature input. Disconnect the Pt100/Pt1000 leads and connect a suitable resistance box directly to the analyzer inputs – see Section 6.4. Check the analyzer displays the correct values as set on the resistance box – see Table 8.3.

Incorrect readings usually indicate an electrical calibration problem. Re-calibrate the analyzer as detailed in Section 7.3.

Table 8.3 Temperature Readings for Resistance Inputs

APPENDIX A

A1 Automatic Temperature Compensation

The conductivities of electrolytic solutions are influenced considerably by temperature variations. Thus, when significant temperature fluctuations occur, it is general practice to correct automatically the measured, prevailing conductivity to the value that would apply if the solution temperature were 25°C, the internationally accepted standard.

Most commonplace, weak aqueous solutions have temperature coefficients of conductance of the order of 2% per °C (i.e. the conductivities of the solutions increase progressively by 2% per °C rise in temperature); at higher concentrations the coefficient tends to become less.

At low conductivity levels, approaching that of ultra-pure water, dissociation of the ${\sf H}_{\tiny 2}$ O molecule takes place and it separates into the ions H+ and OH– . Since conduction occurs only in the presence of ions, there is a theoretical conductivity level for ultrapure water which can be calculated mathematically. In practice, correlation between the calculated and actual measured conductivity of ultra-pure water is very good.

Fig. A1 shows the relationship between the theoretical conductivity for ultra-pure water and that of high purity water (ultra-pure water with a slight impurity), when plotted against temperature. The figure also illustrates how a small temperature variation considerably changes the conductivity. Subsequently, it is essential that this temperature effect is eliminated at conductivities approaching that of ultra-pure water, in order to ascertain whether a conductivity variation is due to a change in impurity level or in temperature.

For conductivity levels above $1\mu S$ cm⁻¹, the generally accepted expression relating conductivity and temperature is:

$$
G_t = G_{25} [1 + \infty (t - 25)]
$$

Where: G_t = conductivity at the temperature t°C

 G_{25} = conductivity at the standard temperature (25°C)

∝ = temperature coefficient per °C

At conductivities between 1µS cm⁻¹ and 1,000µS cm⁻¹, \approx lies generally between 0.015/°C and 0.025/°C. When making temperature compensated measurements, a conductivity analyzer must carry out the following computation to obtain G_{25} :

$$
G_{25} = \frac{G_t}{[1 + \infty (t - 25)]}
$$

However, for ultra-pure water conductivity measurement, this form of temperature compensation alone is unacceptable since considerable errors exist at temperatures other than 25°C.

At high purity water conductivity levels, the conductivity/ temperature relationship is made up of two components: the first component, due to the impurities present, generally has a temperature coefficient of approximately 0.02/°C; and the second, which arises from the effect of the H⁺ and OH⁻ ions, becomes predominant as the ultra-pure water level is approached.

Consequently, to achieve full automatic temperature compensation, the above two components must be compensated for separately according to the following expression:

$$
G_{25} = \frac{G_t - G_{upw}}{[1 + \infty (t - 25)]} + 0.055
$$

Where: G_i = conductivity at temperature t^oC

- $G_{\text{upw}} =$ ultra-pure water conductivity at temperature t°C
- ∝ = impurity temperature coefficient
- $0.055 =$ conductivity in μ S cm⁻¹ of ultra-pure water at 25°C

The expression is simplified as follows:

$$
G_{25} = \frac{G_{imp}}{[1 + \infty (t - 25)]} + 0.055
$$

Where: $G_{\text{im}} =$ impurity conductivity at temperature t^oC

The conductivity analyzer utilizes the computational ability of a microprocessor to achieve ultra-pure water temperature compensation using only a single platinum resistance thermometer and mathematically calculating the temperature compensation required to give the correct conductivity at the reference temperature.

A1.1 Calculation of Temperature Coefficient

The temperature coefficient of a solution can be obtained experimentally by taking non-temperature compensated conductivity measurements at two temperatures and applying the following expression:

$$
\alpha = \frac{G_{t2} - G_{t1}}{G_{t1} (t_2 - 25) - G_{t2} (t_1 - 25)}
$$

Where: $G_{t2} = \text{conductivity measurement at a temperature of } t_2^{\circ}C$
 $G_{t1} = \text{conductivity measurement at a temperature of } t_1^{\circ}C$

One of these measurements could be made at the ambient temperature and the other obtained by heating the sample.

Temperature coefficient (%/ $^{\circ}$ C) = \propto x 100.

For ultra pure water applications the temperature compensation equation becomes,

$$
\alpha = \frac{G_{imp1} - G_{imp2}}{[G_{imp2} (t_1 - 25) - G_{imp1} (t_2 - 25)]}
$$

Where: $G_{imp1} = G_{t1} - G_{upw1}$
 $G_{imp2} = G_{t2} - G_{upw2}$

A2 Relationship Between Conductivity and Total Dissolved Solids (TDS) Measurement

The TDS factor (i.e. the relationship between conductivity $(\mu S \text{ cm}^{-1})$ and TDS in p.p.m.) is totally dependent on the properties of the solution being measured.

In simple solutions where only one electrolyte is present, the conductivity/TDS ratio can easily be ascertained, e.g. 0.5 in the case of sodium chloride. However, in complex solutions where more than one electrolyte is present, the ratio is not easily calculated and can only be reliably determined by laboratory testing (e.g. precipitation and weighing). The ratio in these cases is found to vary between approximately 0.4 and 0.8, depending on the chemical constituents, and is constant only when the chemical ratios remain constant throughout a particular process.

In cases where the TDS factor cannot be determined easily, refer to the supplier of the particular chemical treatment being used.

A3 Inferred pH Derived from Differential Conductivity

Where cation resin columns are used to remove the effects on the conductivity measurement of alkaline and hydrazine chemical treatment on boilers, it is common practice to measure both before- (specific conductivity) and after-cation conductivity. The sensitivity of the conductivity measurement to chemical contaminants resulting from condenser leaks or poor boiler-feed make-up water is increased by passing the sample through the cation column. Both measurements can be made on one dual conductivity input analyzer.

If it is known that a sample contains only one impurity, e.g. ammonia, the conductivity measurement now becomes an indication of the concentration of that impurity. It is now possible to calculate the pH of the sample from the concentration data and the result is referred to as 'inferred pH'.

It is stressed that the inferred pH value is valid only if there are no other impurities present. To ensure this, the chemist looks at the after-cation conductivity (which is a sensitive method of detecting impurities in the sample) and only after establishing that it is low is the inferred pH value validated.

The dual input conductivity analyzer, when used to monitor direct and after-cation conductivities on a sample, automatically calculates the inferred pH for the most commonly used pH correction chemicals when programmed to do so. The userconfigurable after-cation conductivity alarm is used to detect other impurities in the sample and can thus inform the user of the validity of the inferred pH value.

The maximum after-cation conductivity value is programmable between 0.060 and 1.000µS cm⁻¹ dependent on local conditions. Values above this level generate an **AFTER CAT. HIGH** alarm and before-cation conductivity above 10.000µS cm–1 generates a **BEFORE CAT. HIGH** alarm.

✶ **Note.** Both conductivity inputs must be configured as μ S cm⁻¹ in order to calculate inferred pH.

The inferred pH feature can be used only in the following circumstances:

- a) On steam raising plant.
- b) For boiler chemical treatment such as ammonia, sodium hydroxide, and/or hydrazine. For this application, either **NH3** or **NaOH** temperature compensation must be selected – see Section 7.3.

✶ **Note.** Inferred pH measurement is inappropriate to chemical treatments such as phosphate, morpholine and quinhydrone.

c) Where the after-cation conductivity value is an insignificant value to the before-cation value, or is greater than 1.0uS cm⁻¹.

SPECIFICATION

Conductivity

Range

Programmable 0 to 0.5 to 0 to 10000µS/cm (with various cell constants)

Minimum span

10 x cell constant

Maximum span 10,000 x cell constant

Units of measure

µS/cm, µS/m, mS/cm, mS/m, MΩ-cm and TDS

Accuracy

Better than ±0.01% of span (0 to 100µS/cm) Better than ±1% of reading (10,000µS/cm)

Operating temperature range

–10 to 150°C (14 to 302°F)

Temperature compensation

–10 to 150°C (14 to 302°F)

Temperature coefficient

Programmable 0 to 5%/°C and fixed temperature compensation curves (programmable) for acids, neutral salts and ammonia

Temperature sensor

Programmable Pt100 /Pt1000

Reference Temperature

25°C (77°F)

Display

Type

Dual 5-digit, 7-segment backlit LCD

Information

16-character, single line dot-matrix

Energy-saving function

Backlit LCD configurable as ON or Auto Off after 60s

Logbook (with option board)

Electronic record of major process events and calibration data

Real-time clock (with option board)

Records time for logbook and auto-manual functions

pH /Redox (ORP)

Inputs

1 or 2* pH or mV inputs and solution earth

1 or 2* temperature sensors

Enables connection to glass or enamel pH and reference sensors and Redox (ORP) sensors *AX466 only

Input resistance

Glass > 1 x 10^{13} Ω Reference 1 x 10¹³Ω

Range

–2 to 16pH or –1200 to +1200mV

Minimum span

Any 2pH span or 100mV

Resolution

0.01pH

Accuracy 0.01pH

Temperature compensation modes

Automatic or manual Nernstian compensation Range –10 to 150°C (14 to 302°F)

Process solution compensation with configurable coefficient Range 0 to 100°C (32 to 212°F)

Temperature sensor

Programmable Pt100, Pt1000 & Balco 3kΩ

Calibration Ranges

Check value (zero point) 0 to 14pH

Slope

Between 40 and 105% (low limit user configurable)

Electrode Calibration Modes

Calibration with auto-stability checking

Automatic 1 or 2 point calibration selectable from:

ABF DIN

Merck

NIST

US Tech

2 x User-defined buffer tables for manual entry or 2-point calibration or one-point process calibration

Set Points, Relays and Outputs

Number of set points

3 supplied as standard or 5 with option card fitted

Number of relays*

2 supplied as standard or 4 with option card fitted

Number of analog outputs* (fully isolated)

2 supplied as standard or 4 with option card fitted

Relay Outputs – On/Off

Number of relays

3 supplied as standard

5 with option card fitted

Set point adjustment

Fully configurable as normal or failsafe high/low or diagnostic alert

Hysteresis of reading

Programmable 0 to 5% in 0.1% increments

Delay

Programmable 0 to 60s in 1s intervals

Relay contacts

Single-pole changeover Rating 5A, 115/230V AC, 5A DC

Insulation

2kV RMS contacts to earth/ground

* For AX460 PID versions the control output can be assigned a max. of 2 relays, 2 analog outputs or 1 of each

Analog Outputs

Number of outputs (fully isolated)

2 outputs supplied as standard

4 outputs with option card fitted

Output current

0 to 10mA, 0 to 20mA or 4 to 20mA Analog output programmable to any value between 0 and 22mA to indicate system failure

Accuracy

±0.25% FSD, ±5% of reading

Resolution

0.1% at 10mA 0.05% at 20mA

Maximum load resistance

750Ω at 20mA

Configuration

Can be assigned to either measured variable or either sample temperature

Serial communications

Modbus serial data interface

Access to Functions

Direct keypad access

Measurement, maintenance, configuration, diagnostics or service functions

Performed without external equipment or internal jumpers

Sensor cleaning function

Configurable cleaning action relay contact

Continuous

Pulse in 1s on and off times

Frequency

5 minutes to 24 hours, fully configurable

Duration

15s to 10 minutes, fully configurable

Recovery period

30s to 5 minutes, fully configurable

Mechanical Data

Wall-/Pipe-mount versions

IP66/NEMA4X

Dimensions 192mm high x 230mm wide x 94mm deep (7.56 in. high x 9.06 in. wide x 3.7 in. deep) Weight 1kg (2.2 lb)

Panel-mount versions

IP66/NEMA4X (front only) Dimensions 96mm x 96mm x 162mm deep (3.78 in. x 3.78 in. x 6.38 in. deep) Weight 0.6kg (1.32 lb)

Cable Entry Types

Standard

5 or 7* x M20 cable glands

N. American

 * 7 x knockouts suitable for $\frac{1}{2}$ in. Hubble gland

Power supply

Voltage requirements

85 to 265V AC 50/60 Hz 24V AC or 12 to 30V DC (optional)

Power consumption

<10VA

Insulation

Mains to earth (line to ground) 2kV RMS

Environmental Data

Operating temperature limits

–20 to 65°C (–4 to 149°F)

Storage temperature limits –25 to 75°C (–13 to 167°F)

Operating humidity limits Up to 95%RH non condensing

EMC

Emissions and immunity

Meets requirements of: EN61326 (for an industrial environment) EN50081-2 EN50082-2

Hazardous area approvals

CENELEC ATEX IIG EEx n IIC T4 Pending FM non-incendive Class I Div. 2 Groups A to D Pending CSA non-incendive Class I Div. 2 Groups A to D Pending

Safety

General safety

EN61010-1

Overvoltage Class II on inputs and outputs Pollution category 2

Languages

Languages configurable English French German Italian Spanish

SS/AX4CO Issue 2

NOTES

PRODUCTS & CUSTOMER SUPPORT

Products Automation Systems

- *for the following industries:*
	- Chemical & Pharmaceutical
	- Food & Beverage
	- **Manufacturing**
	- Metals and Minerals
	- Oil, Gas & Petrochemical
	- Pulp and Paper

Drives and Motors

- *AC and DC Drives, AC and DC Machines, AC motors to 1kV*
- *Drive systems*
- *Force Measurement*
- *Servo Drives*

Controllers & Recorders

- *Single and Multi-loop Controllers*
- *Circular Chart , Strip Chart and Paperless Recorders*
- *Paperless Recorders*
- *Process Indicators*

Flexible Automation

• Industrial Robots and Robot Systems

Flow Measurement

- *Electromagnetic Magnetic Flowmeters*
- *Mass Flow Meters*
- *Turbine Flowmeters*
- *Wedge Flow Elements*

Marine Systems & Turbochargers

- *Electrical Systems*
- *Marine Equipment*
- *Offshore Retrofit and Referbishment*

Process Analytics

- *Process Gas Analysis*
- *Systems Integration*

Transmitters

- *Pressure*
- *Temperature*
- *Level*
- *Interface Modules*

Valves, Actuators and Positioners

- *Control Valves*
- *Actuators*
- *Positioners*

Water, Gas & Industrial Analytics Instrumentation

- *pH, conductivity, and dissolved oxygen transmitters and sensors*
- *ammonia, nitrate, phosphate, silica, sodium, chloride, fluoride, dissolved oxygen and hydrazine analyzers.*
- *Zirconia oxygen analyzers, katharometers, hydrogen purity and purge-gas monitors, thermal conductivity.*

Customer Support

We provide a comprehensive after sales service via a Worldwide Service Organization. Contact one of the following offices for details on your nearest Service and Repair Centre.

United Kingdom

ABB Limited Tel: +44 (0)1453 826661 Fax: +44 (0)1453 827856

United States of America

ABB Inc. Tel: +1 (0) 755 883 4366 Fax: +1 (0) 755 883 4373

Client Warranty

Prior to installation, the equipment referred to in this manual must be stored in a clean, dry environment, in accordance with the Company's published specification. Periodic checks must be made on the equipment's condition.

In the event of a failure under warranty, the following documentation must be provided as substantiation:

- 1. A listing evidencing process operation and alarm logs at time of failure.
- 2. Copies of operating and maintenance records relating to the alleged faulty unit.

ABB has Sales & Customer Support expertise in over 100 countries worldwide

www.abb.com

The Company's policy is one of continuous product improvement and the right is reserved to modify the information contained herein without notice.

> Printed in UK (05.03) © ABB 2003

ABB Limited Oldends Lane, Stonehouse Gloucestershire, GL10 3TA UK Tel: +44 (0)1453 826661 Fax: +44 (0)1453 827856

ABB Inc. 2175 Lockheed Way Carson City, NV 89706 USA Tel: +1 (0) 775 883 4366 Fax: +1 (0) 775 883 4373

IM/AX4CO Issue 3 IM/AX4CO Issue 3